27,596 research outputs found

    Quantum Ratchet Accelerator without a Bichromatic Lattice Potential

    Full text link
    In a quantum ratchet accelerator system, a linearly increasing directed current can be dynamically generated without using a biased field. Generic quantum ratchet acceleration with full classical chaos [Gong and Brumer, Phys. Rev. Lett. 97, 240602 (2006)] constitutes a new element of quantum chaos and an interesting violation of a sum rule of classical ratchet transport. Here we propose a simple quantum ratchet accelerator model that can also generate linearly increasing quantum current with full classical chaos. This new model does not require a bichromatic lattice potential. It is based on a variant of an on-resonance kicked-rotor system, periodically kicked by two optical lattice potentials of the same lattice constant, but with unequal amplitudes and a fixed phase shift between them. The dependence of the ratchet current acceleration rate on the system parameters is studied in detail. The cold-atom version of our new quantum ratchet accelerator model should be realizable by introducing slight modifications to current cold-atom experiments.Comment: 9 pages, 6 figures, submitted to Phys. Rev.

    Controlled Quantum State Transfer in a Spin Chain

    Full text link
    Control of the transfer of quantum information encoded in quantum wavepackets moving along a spin chain is demonstrated. Specifically, based on a relationship with control in a paradigm of quantum chaos, it is shown that wavepackets with slow dispersion can automatically emerge from a class of initial superposition states involving only a few spins, and that arbitrary unspecified travelling wavepackets can be nondestructively stopped and later relaunched with perfection. The results establish an interesting application of quantum chaos studies in quantum information science.Comment: 6 pages, 3 figures, to appear in Physical Review

    Extended Holographic dark energy

    Full text link
    The idea of relating the infrared and ultraviolet cutoffs is applied to Brans-Dicke theory of gravitation. We find that extended holographic dark energy from the Hubble scale or the particle horizon as the infrared cutoff will not give accelerating expansion. The dynamical cosmological constant with the event horizon as the infrared cutoff is a viable dark energy model.Comment: one reference is corrected, 3 pages, no figure,V3: minor correction

    Diffusion Models for Double-ended Queues with Renewal Arrival Processes

    Full text link
    We study a double-ended queue where buyers and sellers arrive to conduct trades. When there is a pair of buyer and seller in the system, they immediately transact a trade and leave. Thus there cannot be non-zero number of buyers and sellers simultaneously in the system. We assume that sellers and buyers arrive at the system according to independent renewal processes, and they would leave the system after independent exponential patience times. We establish fluid and diffusion approximations for the queue length process under a suitable asymptotic regime. The fluid limit is the solution of an ordinary differential equation, and the diffusion limit is a time-inhomogeneous asymmetric Ornstein-Uhlenbeck process (O-U process). A heavy traffic analysis is also developed, and the diffusion limit in the stronger heavy traffic regime is a time-homogeneous asymmetric O-U process. The limiting distributions of both diffusion limits are obtained. We also show the interchange of the heavy traffic and steady state limits

    Improved cosmological constraints on the curvature and equation of state of dark energy

    Full text link
    We apply the Constitution compilation of 397 supernova Ia, the baryon acoustic oscillation measurements including the AA parameter, the distance ratio and the radial data, the five-year Wilkinson microwave anisotropy probe and the Hubble parameter data to study the geometry of the universe and the property of dark energy by using the popular Chevallier-Polarski-Linder and Jassal-Bagla-Padmanabhan parameterizations. We compare the simple χ2\chi^2 method of joined contour estimation and the Monte Carlo Markov chain method, and find that it is necessary to make the marginalized analysis on the error estimation. The probabilities of Ωk\Omega_k and waw_a in the Chevallier-Polarski-Linder model are skew distributions, and the marginalized 1σ1\sigma errors are Ωm=0.2790.008+0.015\Omega_m=0.279^{+0.015}_{-0.008}, Ωk=0.0050.011+0.006\Omega_k=0.005^{+0.006}_{-0.011}, w0=1.050.06+0.23w_0=-1.05^{+0.23}_{-0.06}, and wa=0.51.5+0.3w_a=0.5^{+0.3}_{-1.5}. For the Jassal-Bagla-Padmanabhan model, the marginalized 1σ1\sigma errors are Ωm=0.2810.01+0.015\Omega_m=0.281^{+0.015}_{-0.01}, Ωk=0.0000.006+0.007\Omega_k=0.000^{+0.007}_{-0.006}, w0=0.960.18+0.25w_0=-0.96^{+0.25}_{-0.18}, and wa=0.61.6+1.9w_a=-0.6^{+1.9}_{-1.6}. The equation of state parameter w(z)w(z) of dark energy is negative in the redshift range 0z20\le z\le 2 at more than 3σ3\sigma level. The flat Λ\LambdaCDM model is consistent with the current observational data at the 1σ1\sigma level.Comment: 10 figures, 12 pages, Classical and Quantum Gravity in press; v2 to match the pulished versio
    corecore